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Abstract. 3D lattice structures are gaining widespread application
in multiple design fields. While the number of projects that
utilize load-responsive inhomogeneous and anisotropic 3D lattices
in design applications increase, accessible and effective algorithmic
generation methodologies remain lacking. This paper addresses this
gap by introducing a novel computational method for controlled
load-responsive inhomogeneity and anisotropy in 3D lattice generation.
The presented methods employ a responsive Ellipsoid Packing
algorithm informed by the global tensor field of the packing geometry,
followed by a Kissing Ellipsoids algorithm to generate the lattice.
Load specific anisotropy and inhomogeneity in the ellipsoid packing
process is achieved in response to the magnitude and directionality
values of the global tensor field and specialized responsive lattices
are easily generated. The proposed Ellipsoid Packing workflow is
compared to various common lattice generation algorithms. Results
show improvement in mechanical performance.

Keywords. 3D lattice; ellipsoid packing; bio-inspired; algorithmic
design; ceramic brick.

1. Introduction
With increasing ease of fabrication through Additive Manufacturing Technologies
(AMT), 3D lattice structures are gaining widespread application in architectural
and design fields, as well as in fields such as biomedical and aerospace
engineering. 3-Dimensional lattice structures offer advantages in these fields due
to their ability to achieve high mechanical performance while maintaining a light
weight (Niu et.al.2018).

Despite this increased ease of fabrication, “(...) there is relatively limited
information available in the literature about designing large scale lattice structures
(...) (Kantareddy, 2016)”. This gap is especially apparent as it pertains to
random, inhomogeneous lattice structures and the pertaining generation and
evaluation strategies. This paper aims to address this gap by exploring the
advantages of inhomogeneity and anisotropy in 3 Dimensional lattice structures
within architectural load-bearing applications. Inhomogeneity and anisotropy are
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favored in natural load-bearing structures, such as the bone’s trabecular lattice,
and serve to achieve light weight and high mechanical performance. Within the
context of bone’s trabecular lattice, responsive inhomogeneity occurs as a result
of thickening and thinning of trabecular struts in relation to high and low stress
stimuli respectively. Anisotropy occurs through the adaptation of trabecular strut
orientations parallel to the direction of pertinent compressive forces.

Establishing the anisotropic and inhomogeneous trabecular lattice structure
as a natural precedent, the primary focus of this paper is to present detailed
workflows of bio-inspired and responsive algorithmic lattice generation, whose
manifestations can be realized at various scales through the employment of
emerging AMT.

2. Background
Within the architectural field, various AMT including SLM (Selective Laser
Melting), UV curing ceramic 3D printing, ceramic powder printing, and robotic
extrusion have shown promise in realizing 3-dimensional lattice typologies and
other load-bearing porous modules. In their paper Responsive Spatial Print,
for example, Im and AlOthman present the potentials of real-time calibrated
robotic extrusion as a means of fabricating “self-supporting spatial lattices” (Im,
AlOthman, and Castillo, 2018). The PolyBrick series demonstrate the promise of
ceramic powder printing (Sabin et.al 2014) and UV cured ceramic resin printing
(Birol, Lu, Sekkin et. al. 2019) in the fabrication of load-bearing lattices.
The realization of such projects consists of multiple phases including digital
lattice generation, digital lattice thickening/meshing, and fabrication through
the respective AMT. While the fabrication phase is making rapid progress in
ease and accessibility due to recent developments in additive manufacturing
technologies, preceding phases of digital lattice generation lack contained and
accessible workflows for designer use. The outlined lattice generation algorithms
aim to bridge this gap.

In introducing our lattice generation frameworks and possibilities, algorithmic
generation processes, mechanical evaluations, and respective applications of
various commonly used lattice typologies are outlined and compared to the
proposed novel PolyBrick workflows and lattices. Hence, the paper not only
compares the mechanical performance of generated lattice, but also tackles
concerns about algorithmic efficiency and usability. Generated lattices are
compared to commonly used periodic cellular lattices and various inhomogeneous
anisotropic lattices from natural precedents. While uniform periodic lattice
structures are advantageous in achieving high stiffness to mass ratio, it is
difficult to introduce geometric specialization for heightened efficiency, allowing
“unfavorable load cases like bending or shearing” (Reinhart and Teufelhart 2013)
to occur. Inhomogeneous anisotropic lattice geometries break this constraint,
differing from periodic cellular lattices in their specialized morphology. The
bone’s trabecular lattice is an important example of this, serving as a precedent for
our outlined algorithms. As presented by several projects exploring applications of
lattice structures in the architectural field (Reinhart and Teufelhart 2013) (Felder
et al. 2016), the phenomenon of responsive morphology has immense potential in
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rethinking and expanding the capacities of load-bearing lattice structures. While
there are projects integrating load responsiveness and responsive directionality
within design applications; accessible, effective and user-friendly algorithmic
streamlining of this type of lattice generation remains lacking.

This paper introduces a novel computational method for controlled
load-responsive inhomogeneity and anisotropy in 3D lattice generation. The
primary focus of the proposed framework is presenting streamlined algorithmic
processes of informed and responsive lattice generation. We particularly
contextualize the advantages of inhomogeneity and anisotropy in 3-Dimensional
lattice structures in architectural load-bearing applications. The introduced
algorithm allows for a user-friendly process of inhomogeneous anisotropic
load-bearing lattice generation facilitated through a custom Grasshopper plug-in.
The algorithmic workflows presented expand upon PolyBrick 2.0’s (Birol, Lu,
Sekkin et. al. 2019) algorithmic processes and present a detailed account thereof.

3. Method
3.1. LATTICE GENERATION ALGORITHM

3.1.1. Ellipsoids as an intermediate parameter to control lattice morphology
In our proposed processes for lattice generation, the trabecular bone is determined
as a load responsive precedent of a 3D lattice geometry. The trabecular lattice
is quantified by the morphological parameters of trabecular number, separation,
length, and orientation (Bagi, Berryman, Moalli, 2011). In our workflow,
these morphological quantifiers are algorithmically interpreted as controllable
load response parameters. For this interpretation, ellipsoids are introduced as
media. A number of ellipsoids are packed densely within a design geometry.
Through a secondary algorithm, “Kissing Ellipsoids”, the centroids of the touching
ellipsoids are connected with a line segment. The morphological parameters of
trabecular number, separation, and orientation are thus controlled by ellipsoid
size, distribution, and orientation respectively, allowing the algorithm to interpret
these major morphological features. The response condition is then introduced as
a tensor field to inform ellipsoid packing parameters listed.

3.1.2. Tensor field as a user input to inform Ellipsoid Packing
The tensor field is the key input that establishes load-responsive inhomogeneity
and anisotropy in the process of lattice generation. The tensor field is defined
by a field of three orthogonal tensors at each point within the analyzed global
design geometry. These points correspond to the “nodes” of the voxelized
design geometry (Figure 2, left). For each ellipsoid packed in a design geometry
with a corresponding tensor field, the three tensors interpolated at the ellipsoid
centroid serve as a response condition in determining the length and orientation of
semi-major, semi-median, and semi-minor axes (Figure 1).

The tensor field input can be generated in multiple ways. For processes
outlined in this paper, ANSYS is used to apply Finite Element Analysis (FEA) to
a user-determined design geometry under a set loading condition (Figure 2, right).
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For each node, maximum, middle, and minimum principal stress directions are
calculated as the three orthogonal tensors. In the responsive packing, areas of
larger stress are packed with smaller ellipsoids. Ellipsoids’ main axes are oriented
to align with maximum principal stress direction.

Figure 1. Semi-major, semi-median, semi-minor axis length aligned to and determined by
tensor(stress) magnitudes.

Figure 2. Left: Voxelized design geometry; Right: Finite Element Analysis by ANSYS.

3.1.3. Generation workflow
The Ellipsoid Packing and Kissing Ellipsoids algorithms are implemented using
C#. The Ellipsoid Packing algorithm provides multiple adjustable inputs that
serve as response factors in determining the lattice geometry. These inputs
include boundary geometry, tensor field, maximum ellipsoid principal semi-axis
length, minimum ellipsoid principal semi-axis length, pre-existing ellipsoids, and
maximum iteration.

The lattice generation workflow starts with producing a tensor field for the
boundary geometry with the assistance of ANSYS. The boundary geometry is first
analyzed as a solid inANSYS using a user-defined loading condition. Then, a CSV
file containing the X, Y, Z coordinates of each node as well as key parameters
evaluated at each node can be exported. As a convention of this workflow,
the CSV file is exported in a format that contains maximum principal stress,
middle principal stress, minimum principal stress, and Euler angles indicating the
necessary angle of rotation to transform from the global coordinate system to each
node’s principal stress axis. Finally, the CSV file is translated to a tensor field.

Ellipsoid packing is initiated following the outlined process of tensor field
generation. This consists of packing the design geometry with the associated
tensor field with as many ellipsoids as possible. Simultaneously, the ellipsoids
are scaled and rotated in accordance with the tensor field input.

The dense packing is realized by iteratively adding new ellipsoids and relaxing
the existing ellipsoids. A user-defined input of an initial number of ellipsoids
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is needed to begin the packing into the design geometry. To continue ellipsoid
packing, collisions are checked between pairs of ellipsoids. This process is
particularly complex and computationally expensive when applied to ellipsoid
geometries because the ellipsoid collision point doesn’t necessarily correspond to
the line that connects the centroids as it does in spherical colliding. To simplify
this process, the orientation difference of two colliding ellipsoids is assumed to
be small, hence the collision point is still assumed to be in close proximity to the
connection line. For each pair of ellipsoids, the summation of the two rim distances
along the center connection line is calculated (Formula 1-3) and then compared to
the centroid distance. When calculating the rim distance, a rotation transformation
is applied to align the ellipsoid axes to the global 3D Cartesian coordinate system
so that standard ellipsoid function can be used to simplify the calculation (Figure
3). If the sum of rim distances is greater than the centroid distance, they are
determined to be colliding, otherwise not. If no collision is detected, indicating all
the ellipsoids are fully relaxed within the boundary geometry, one more ellipsoid is
added into the boundary geometry. If collisions are detected, a relaxation process
is initiated and the colliding ellipsoids are moved away from each other by half of
the overlap distance.

v1 = Normalize(R1(C2 − C1)) = (x1, y1, z1) (1)

v2 = Normalize(R2(C2 − C1)) = (x2, y2, z2) (2)
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Figure 3. Left: A pair of ellipsoids in the global coordinate system; Mid: Transform the
ellipsoids to the local coordinate system of ellipsoid 1; Right: Transform the ellipsoids to the

local coordinate system of ellipsoid 2.

After the collision detection process is completed, the ellipsoid sizes and
orientations are updated according to the tensors interpolated at the new centroid
locations as a response to the tensor field. The three principal semiaxes of
each ellipsoid are respectively aligned to the directions of the three tensors, and
semi-axis lengths are determined by both the tensor magnitudes and user-decided
maximum and minimum ellipsoid semi-axis lengths. Generally, an ellipsoid is
expected to be smaller when the tensor magnitudes are higher, and is to be oriented
towards the largest of the three tensors (Figure 4). In order to realize this, a
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mathematical mechanism is designed. Each tensor is mapped to a semi-axis
length inversely proportional to its magnitude, with the maximum and minimum
magnitudes of the tensor field as a source range and the user-input maximum and
minimum semi-axis lengths as a target range. Each mapped length is then assigned
to the two ellipsoid axes orthogonal to the tensor (Formula 4-6). Of the two lengths
that an ellipsoid axis receives this way, the smaller of these two, corresponding to
the larger orthogonal stress, is chosen as the length of that semi-axis.

Figure 4. Larger tensor magnitude leads to a smaller ellipsoid.
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Ellipsoids are added and relaxed iteratively until boundary geometry is filled
(Figure 5). When no more collisions are detected within the number of iterations,
the packing process is finished and the last pack of ellipsoids is output. The 3D
lattice is then generated through the Kissing Ellipsoids algorithm, which connects
the centroids of the kissing ellipsoids(Figure 6). This algorithm allows for the
adjustment of the number of struts by changing kissing tolerance (Formula 7).

Figure 5. The pack of ellipsoids at different iterations.

Several optimization techniques are devised to improve the performance of the
algorithm. When it comes to large-scale ellipsoid packing, looping over all pairs
of ellipsoids for collision detection can be time-consuming and computationally
expensive. To reduce the amount of required collision detection necessary during
the packing iterations, the spatial partitioning technique is applied. The double
of the maximum ellipsoid semi-axis length is used as the partition size, and the
boundary is divided into voxels. Collision detection is only applied to a pair of
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ellipsoids if one of them was moved during the last iteration. If no movement
occurred in the ellipsoid pair in the previous iteration, no new collision detection
is applied.

Figure 6. The lattice created by Kissing Ellipsoid algorithm and the comparison of the tensor
field with the thickened lattice.

tmin(drim1 + drim2) < ||C2 − C1|| < tmax(drim1 + drim2) (7)

3.2. COMPARATIVE STUDIES

3.2.1. Qualitative comparison of algorithmic design
Control lattices for comparison include both cellular periodic lattices generated
by Crystallon for grasshopper, and other inhomogeneous anisotropic lattice
precedents such as Sphere Packing followed by 3D Voronoi by Alvin Huang
(2016), Ellipsoid Packing with 3D Delaunay by Felder et. al (2016).

Crystallon works by applying adaptive voxelization to a set design volume.
A 3D unit linework pattern is created and mapped into each voxel of the design
volume. A 3D periodic cellular lattice is generated with each voxel containing the
same unit. The main input parameters include design volume, voxel size, and unit
pattern. Users can morph the voxels in some areas using point attractors or curve
attractors to locally densify or loosen the voxel division and potentially respond to
external factors like loading. However, attractors are not explicit and are difficult
for users to manipulate. The inhomogeneity and anisotropy of the periodic cellular
lattice highly depend on the topology of voxelization and the anisotropy of the unit.

Huang’s method of Sphere Packing with 3D Voronoi is employed within the
context of a chair design. The furniture geometry is analyzed with Karamba, a
Grasshopper FEA plug-in. The calculated principal stresses are used to inform
the sphere packing process, where areas of larger stress are packed more densely
with smaller spheres. This is similar to the PolyBrick ellipsoid packing logics.
The two algorithms differ, however, in the process of lattice generation. Huang
uses sphere centroids as an input for a 3D Voronoi algorithm and therefore loses
control of strut orientations. While this method is able to achieve load-responsive
inhomogeneity, it doesn’t have enough control over lattice anisotropy due to a lack
of strut orientation control.

The method of Ellipsoid Packing with 3D Delaunay employed by Felder et
al. and our proposed packing method are similar in their use of FEA informed
Ellipsoid Packing to control lattice directionality. However, there are three
important differences in the algorithmic designs. Firstly, in Felder’s method,
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Ellipsoid Packing is used to distribute lattice nodes and control inhomogeneity.
The anisotropy is later achieved through a post-processing step, where struts not
aligned with the stress field are removed. In our proposed Ellipsoid Packing
algorithm, both anisotropy and inhomogeneity are controlled and enforced by
dense packing. A second difference is the ways ellipsoids update in response to the
stress field. In addition to aligning the ellipsoids to the stresses, Felder’s method
also tries to align the connection of the neighboring ellipsoids to the stresses. The
lattice generation technique also shows a difference. In Felder’s method, the lattice
is generated by the 3D Delaunay triangulation algorithm, while our proposed
method uses Kissing Ellipsoids.

3.2.2. Quantitative comparison of lattice mechanical performances

Figure 7. Part of the test lattices (a)3D Voronoi (b)3D Delaunay (c) Kissing Ellipsoids. Blue
indicates zero deformation, red indicates the maximum deformation within each lattice.

Periodic cellular lattices, Sphere Packing with 3D Voronoi lattice, and Ellipsoid
Packing with 3D Delaunay lattice are generated and tested with ANSYS (Figure
7). To begin the quantitative comparison, we generated lattices that had identical
boundary sizes. When these line bodies were moved into ANSYS, they were all
piped by the same radius, chosen to be 2mm. The total amount of force applied
to each lattice is kept the same by dividing an arbitrary load of 1000N across
the top face vertices of each lattice respectively. Controlling these parameters
simplifies the post-processing of the axial force and directional displacement data
because only lattice length is uncorrected for. Because some lattices have an
overall longer length, meaning there was more material contained in the bounding
box, they inherently perform better. To adjust for this, stiffness per volume is
calculated using themaximumY-direction displacement that occurs at the top face,
the original height of the lattice, the total area of the top face piped vertices, and
the 1000N uniform load. The maximum axial force and directional displacement
data without this length correction are reviewed to get a general sense of the
performance of the lattice.

4. Result
4.1. QUANTITATIVE COMPARISON OF LATTICE MECHANICAL
PERFORMANCES

As the interest group, two ellipsoid packing lattices are tested, one generated
with a uniform loading condition input and the other with a point loading input.
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Figure 8 illustrates how our lattices perform in stress, deformation, and stiffness
against the control lattices generated with different algorithms. An optimal
lattice for load-bearing applications would minimize the highest stress found in
a beam element, minimize the maximum deformation of the lattice, and maximize
the stiffness because the forces would be most evenly distributed and protect
the lattice well from breakage. Stiffness is essentially a combination of stress
and deformation and by correcting for volume, we may consider the lattices
independent of density. The ellipsoid packing lattices formed with uniform
loading and point loading both show higher stiffness per volume ratios than a
majority of the lattices tested, and outperform 11 and 14 lattices, out of the total 18
tested, respectively. The lattices each have a stiffness per volume of 172.7 kPa/m2
and 197.9 kPa/m2 respectively.

Figure 8. (a) Maximum Tensile Stress in one beam element. (b) Maximum Compressive Stress
in one beam element. (c) Maximum deformation in the direction of the force application. (d)
Stiffness per volume for each lattice. For a, b and c, lower value is more advantageous. For d,

higher value is more advantageous.

5. Limitations and Conclusion
5.1. LIMITATIONS

In the quantitative comparison, we chose the piping radius of 2mm based on
the expected physical dimensions of our physical prototypes. However, each
individual lattice does have an optimal piping diameter to maximize performance.
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Hence, wemay not have chosen the ideal radius for the ellipsoid packing algorithm
to demonstrate its full potential or we may have chosen a radius that causes
other lattices to perform poorly. Therefore, our current results should only be
considered on the scale of those prototypes. If we wanted to change the scale or
extrapolate the results, more testing would be needed to explore the dependence
between performance and piping radius. Additionally, the time and memory usage
of different algorithms need to be compared for a better understanding of our
method’s computational performance.

5.2. CONCLUSION

In this paper, a new computational method based on ellipsoid packing is proposed
for the generation of anisotropic and inhomogeneous lattice structures. In contrast
with existing lattice generation algorithms, this method provides comprehensive
control over both anisotropy and inhomogeneity and increases ease of generating
specialized responsive geometries. For the next phase, a load-responsive strut
thickening algorithm will be developed to create a complete lattice structure.
Furthermore, the proposed method can be leveraged in architectural-scale projects
with additional research of material and fabrication methods. Robotic clay
extrusion is foreseen as a promising future trajectory to fabricate generated
load-responsive lattice typologies at an architectural scale, contextualized as part
of a wall design. Thus architectural advantages and potentials of proposed
responsive 3D lattice algorithms will materialize.
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